If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-10x-7=0
a = 7; b = -10; c = -7;
Δ = b2-4ac
Δ = -102-4·7·(-7)
Δ = 296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{296}=\sqrt{4*74}=\sqrt{4}*\sqrt{74}=2\sqrt{74}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{74}}{2*7}=\frac{10-2\sqrt{74}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{74}}{2*7}=\frac{10+2\sqrt{74}}{14} $
| -2(s+-5)=6 | | 10=-7x+5(x+4) | | -4=3+p | | −2x−6=x−21 | | X-12=-5x-13 | | 51/5+1/13x=13 | | 7 | | 3=c−34 | | 4e-7(e+3)=-36 | | 7 | | 7 | | 5g+8+5=3g−g+10 | | x2-10=36 | | 1.4x+5x+5.25+1.4x+5x+5.25=3x-7.5+4.25x+3x-7.5+4.25x | | 1.5=x/x-5 | | 22{x+4}=154 | | 2m+4m-12=-30 | | n=11+7.9n | | 15=6h-15 | | 400=k2 | | n=13+7.5n | | -x+6=8x+69 | | 4x=+9=2x-7 | | 5(y+2)=6(y+1) | | 17x-23+7x+2=90 | | 3x+67=102 | | 2m-5=2m-5 | | -3(-2)+5x=26 | | -6y=-8-7y | | 11x-2+19x+3+9x+1=90 | | 2x+2+13=91 | | 7x-27°=4x+12° |